© 656 torr	
pressure (745	xygen and helium is 92.3% by mass oxygen. It is collected at atmospheric torr). What is the partial pressure oxygen in this mixture? Hint: partial calculated from the total pressure via MOLE FRACTIONS.
688 torr	
O 333 torr Question 3	2 mt
If the average at 100°C?	2 pts
1280 m/s 716 m/s 320 m/s 572 m/s	
Question 4	2 pt:
decompose ra dioxide are add The nitrogen g	omobiles contain crystals of sodium azide (NaN ₃) which, during a collision, pidly to give nitrogen gas and sodium metal. (Potassium nitrate and silicon ded to remove the sodium metal by converting it into a harmless material.) as liberated behaves as an ideal gas and any solid produced has a me (its volume can be ignored). Calculate the mass of sodium azide
	nerate enough nitrogen gas to fill a 57.0 L air bag at 1.04 atm and 16°C.
2.50 g Question 5	1 pt:
What is the roo 4? 16.0 m/s 50.4 m/s	ot mean square speed of the nitrogen gas molecules generated in question
1.59 m/s	
	1 pts ollowing statements about Kinetic-Molecular Theory of gases is FALSE? etween molecules are elastic.
The average	ist of molecules in continuous random motion. e kinetic energy of gas molecules in a sample of gas is independent of temperature. e between molecules is much larger than the diameter of each molecule.
Question 7	1 pts
temperatures s	axwell distribution of speeds for the same sample of gas at different shows that erature increases, a high proportion of molecules have very slow speeds. erature decreases, the distribution of speeds widens.
at high temporal	erature decreases, the distribution of speeds widens. peratures, most molecules have speeds close to their average speed. eratures, most molecules have speeds close to their average speed. erature decreases, a high proportion of molecules have very high speeds.
Question 8	1 pt:
effusion.	pases H_2 , Ne, O_2 , and Ar. Put them in order of their DECREASING rate of $P(S_2)$ $P(S_2)$ $P(S_3)$
[Select]	> [Select]
	1 pt ratio of the rate of effusion of CO_2 to that of He.
3.3 : 1 0.090 : 1 12 : 1 11 : 1	
0 0.30 : 1	
	e gas and O_2 have the same temperature, pressure, and volume. Which ater number of collisions of gas molecules with the walls of the container?
The O_2 gas The He gas	e same since the pressure is the same. since it has a higher average kinetic energy because it is more massive. because it is less massive and moving with a higher average velocity. ce it has a higher average momentum as it is more massive.
Question 1	1 2 pt:
	2 pts ontaining O_2 at 2.00 atm is connected to a 3.0 L flask containing H_2 at 4.00 ases are allowed to mix. What is the mole fraction of H_2 ?
0.67 0.25 0.55	
Question 1	<u> </u>
of 337 mg of m	being used to simulate the atmosphere of another planet at 23°C consists nethane, 148 mg of argon, and 210 mg of nitrogen. The partial pressure of 6 K is 19.0 kPa. Calculate the total pressure of the mixture.
29.1 kPa	
Question 14 Calculate the v	1 pts volume of the mixture described in question 13.
0.902 L 0.971 L 9.58 mL	
O 0.226 L Question 1	5 2 pts
	solid mercury oxide (HgO) will decompose into mercury and oxygen gas ollowing equation: $2 \text{Hg}(g) + \text{O}_2(g)$
and all of the s the partial pres 0.125 bar 0.25 bar	container that has only solid HgO in it, the temperature is raised to 700 K solid decomposes. The total pressure in the container is 0.75 bar. What is ssure of oxygen?
0.75 bar	
_	foit ideal behavior in low pressure situations because when the pressure is as particles are
undergoing slightly attra	
Question 17	d rarely interacting. 7 2 pts
such equation hard sphere m P(V-nb) = nRT A 1 mole samp	
b = 0.01 L/m 0.176 L/mol	
0 b = 0.025 L/	
The ideal gas of the perfectly for	equation models the gas behavior observed in the world pressures under 20 atm.
very well un	some gases, but not for others. der some conditions, but shows large errors in others. temperatures under 1000 K.
O very well un Question 19	der all conditions for most gases. 1 pts
Which of the forward waals coefficient C ₂ F ₆	ollowing gases would you predict to have the largest value of the van der ent, 'b?'
C_2FCI_5 $C_2F_2CI_4$ CI_2	
C ₂ F ₂ Cl ₄	0 2 pts
C ₂ F ₂ Cl ₄ Cl ₂ CO ₂ Question 20 Consider the fo	Dillowing van der Waals coefficients: L ² ·atm·mol ⁻²) b (L·mol ⁻¹) 4.17 0.0371